83 research outputs found

    Overcoming the acoustic diffraction limit in photoacoustic imaging by localization of flowing absorbers

    Full text link
    The resolution of photoacoustic imaging deep inside scattering media is limited by the acoustic diffraction limit. In this work, taking inspiration from super-resolution imaging techniques developed to beat the optical diffraction limit, we demonstrate that the localization of individual optical absorbers can provide super-resolution photoacoustic imaging well beyond the acoustic diffraction limit. As a proof-of-principle experiment, photoacoustic cross-sectional images of microfluidic channels were obtained with a 15 MHz linear CMUT array while absorbing beads were flown through the channels. The localization of individual absorbers allowed to obtain super-resolved cross-sectional image of the channels, by reconstructing both the channel width and position with an accuracy better than λ/10\lambda/10. Given the discrete nature of endogenous absorbers such as red blood cells, or that of exogenous particular contrast agents, localization is a promising approach to push the current resolution limits of photoacoustic imaging

    Photoacoustic generation by a gold nanosphere: From linear to nonlinear thermoelastics in the long-pulse illumination regime

    Full text link
    We investigate theoretically the photoacoustic generation by a gold nanosphere in water in the thermoelastic regime. Specifically, we consider the long-pulse illumination regime, in which the time for electron-phonon thermalisation can be neglected and photoacoustic wave generation arises solely from the thermo-elastic stress caused by the temperature increase of the nanosphere or its liquid environment. Photoacoustic signals are predicted computed based on the successive resolution of a thermal diffusion problem and a thermoelastic problem, taking into account the finite size of the gold nanosphere and the temperature-dependence of the thermal expansion coefficient of water. For sufficiently high illumination fluences, this temperature dependence yields a nonlinear relationship between the photoacoustic amplitude and the fluence. For nanosecond pulses in the linear regime, we show that more than 90 % of the emitted photoacoustic energy is generated in water, and the thickness of the generating layer around the particle scales close to the square root of the pulse duration. Our results demonstrate that the point-absorber model introduced by Calasso et al.[17] significantly overestimates the amplitude of photoacoustic waves in the nonlinear regime. We therefore provide quantitative estimates of a critical energy, defined as the absorbed energy required such that the nonlinear contribution is equal to that of the linear contribution. Our results suggest that the critical energy scales as the volume of water over which heat diffuses during the illumination pulse. Moreover, thermal nonlinearity is shown to be expected only for sufficiently high ultrasound frequency. Finally, we show that the relationship between the photoacoustic amplitude and the equilibrium temperature at sufficiently high fluence reflects the thermal diffusion at the nanoscale around the gold nanosphere.Comment: Published in Physical Review B, 16 pages, 14 figure

    Photoacoustic microendoscopy through multimode fibers

    Get PDF
    No Abstract

    Super-resolution photoacoustic imaging via flow induced absorption fluctuations

    Full text link
    In deep tissue photoacoustic imaging the spatial resolution is inherently limited by the acoustic wavelength. We present an approach for surpassing the acoustic diffraction limit by exploiting temporal fluctuations in the sample absorption distribution, such as those induced by flowing particles. In addition to enhanced resolution, our approach inherently provides background reduction, and can be implemented with any conventional photoacoustic imaging system. The considerable resolution increase is made possible by adapting notions from super-resolution optical fluctuations imaging (SOFI) developed for blinking fluorescent molecules, to flowing acoustic emitters. By generalizing SOFI mathematical analysis to complex valued signals, we demonstrate super-resolved photoacoustic images that are free from oscillations caused by band-limited detection. The presented technique holds potential for contrast-agent free micro-vessels imaging, as red blood cells provide a strong endogenous source of naturally fluctuating absorption

    Acousto-optical coherence tomography with a digital holographic detection scheme

    Get PDF
    Acousto-optical coherence tomography (AOCT) consists in using random phase jumps on ultrasound and light to achieve a millimeter resolution when imaging thick scattering media. We combined this technique with heterodyne off-axis digital holography. Two-dimensional images of absorbing objects embedded in scattering phantoms are obtained with a good signal-to-noise ratio. We study the impact of the phase modulation characteristics on the amplitude of the acousto-optic signal and on the contrast and apparent size of the absorbing inclusion

    Radiative transfer and diffusion limits for wave field correlations in locally shifted random media

    Full text link
    The aim of this paper is to develop a mathematical framework for opto-elastography. In opto-elastography, a mechanical perturbation of the medium produces a decorrelation of optical speckle patterns due to the displacements of optical scatterers. To model this, we consider two optically random media, with the second medium obtained by shifting the first medium in some local region. We derive the radiative transfer equation for the cross-correlation of the wave fields in the media. Then we derive its diffusion approximation. In both the radiative transfer and the diffusion regimes, we relate the correlation of speckle patterns to the solutions of the radiative transfer and the diffusion equations. We present numerical simulations based on our model which are in agreement with recent experimental measurements
    • 

    corecore